Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Experimental Neurobiology ; : 419-430, 2022.
Artigo em Inglês | WPRIM | ID: wpr-966838

RESUMO

There is a scarcity of experimental studies on peripheral nerve regeneration using placental extract (PE). This study aimed to investigate the effects of topical PE application on recovery after crush injury to the rat facial nerve using functional, electrophysiological, and morphological evaluations. The viability of the RSC96 Schwann cells treated with PE (0.5~4 mg/ml) increased significantly. Immunoblot test revealed that PE application enhanced the migration of RSC96 cells. Quantitative polymerase chain reaction demonstrated that PE increased the expression of neurotropic genes. The recovery from vibrissa fibrillation in the PE-treated group was superior to that in the control group. The threshold of action potential was also significantly lower in the PE group. Histopathological examination showed that crushed facial nerves treated with PE exhibited larger axons. The surrounding myelin sheaths were more distinct and thicker in the PE-treated group. Hence, PE may be considered a topical therapeutic agent for treating traumatic facial nerve paralysis.

2.
Anatomy & Cell Biology ; : 20-27, 2022.
Artigo em Inglês | WPRIM | ID: wpr-925392

RESUMO

Experimental autoimmune uveitis (EAU), an animal model of human uveitis, is characterized by infiltration of autoimmune T cells in the uvea as well as in the retina of susceptible animals. EAU is induced by the immunization of uveitogenic antigens, including either retinal soluble-antigen or interphotoreceptor retinoid-binding proteins, in Lewis rats. The pathogenesis of EAU in rats involves the proliferation of autoimmune T cells in peripheral lymphoid tissues and breakdown of the blood-retinal barrier, primarily in the uvea and retina, finally inducing visual dysfunction. In this review, we describe recent EAU studies to facilitate the design of a therapeutic strategy through the interruption of uveitogenic factors during the course of EAU, which will be helpful for controlling human uveitis.

3.
Experimental Neurobiology ; : 308-317, 2021.
Artigo em Inglês | WPRIM | ID: wpr-890651

RESUMO

Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.

4.
Experimental Neurobiology ; : 308-317, 2021.
Artigo em Inglês | WPRIM | ID: wpr-898355

RESUMO

Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.

5.
Experimental Neurobiology ; : 74-84, 2019.
Artigo em Inglês | WPRIM | ID: wpr-739529

RESUMO

Olfactory dysfunction occurs in multiple sclerosis in humans, as well as in an animal model of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyze differentially expressed genes (DEGs) in olfactory bulb of EAE-affected mice by next generation sequencing, with a particular focus on changes in olfaction-related signals. EAE was induced in C57BL/6 mice following immunization with myelin oligodendrocyte glycoprotein and adjuvant. Inflammatory lesions were identified in the olfactory bulbs as well as in the spinal cord of immunized mice. Analysis of DEGs in the olfactory bulb of EAE-affected mice revealed that 44 genes were upregulated (and which were primarily related to inflammatory mediators), while 519 genes were downregulated; among the latter, olfactory marker protein and stomatin-like 3, which have been linked to olfactory signal transduction, were significantly downregulated (log2 [fold change] >1 and p-value < 0.05). These findings suggest that inflammation in the olfactory bulb of EAE-affected mice is associated with the downregulation of some olfactory signal transduction genes, particularly olfactory marker protein and stomatin-like 3, which may lead to olfactory dysfunction in an animal model of human multiple sclerosis.


Assuntos
Animais , Humanos , Camundongos , Regulação para Baixo , Encefalomielite Autoimune Experimental , Expressão Gênica , Imunização , Inflamação , Modelos Animais , Esclerose Múltipla , Glicoproteína Mielina-Oligodendrócito , Bulbo Olfatório , Proteína de Marcador Olfatório , Transdução de Sinais , Medula Espinal , Transcriptoma
6.
Experimental Neurobiology ; : 495-503, 2019.
Artigo em Inglês | WPRIM | ID: wpr-763778

RESUMO

Memantine, a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, suppresses the release of excessive levels of glutamate that may induce neuronal excitation. Here we investigated the effects of memantine on salicylate-induced tinnitus model. The expressions of the activity-regulated cytoskeleton-associated protein (ARC) and tumor necrosis factor-alpha (TNF α)genes; as well as the NMDA receptor subunit 2B (NR2B) gene and protein, were examined in the SH-SY5Y cells and the animal model. We also used gap-prepulse inhibition of the acoustic startle reflex (GPIAS) and noise burst prepulse inhibition of acoustic startle, and the auditory brainstem level (electrophysiological recordings of auditory brainstem responses, ABR) and NR2B expression level in the auditory cortex to evaluate whether memantine could reduce salicylate-mediated behavioral disturbances. NR2B was significantly upregulated in salicylate-treated cells, but downregulated after memantine treatment. Similarly, expression of the inflammatory cytokine genes TNFα and immediate-early gene ARC was significantly increased in the salicylate-treated cells, and decreased when the cells were treated with memantine. These results were confirmed by NR2B immunocytochemistry. GPIAS was attenuated to a significantly lesser extent in rats treated with a combination of salicylate and memantine than in those treated with salicylate only. The mean ABR threshold in both groups was not significant different before and 1 day after the end of treatment. Additionally, NR2B protein expression in the auditory cortex was markedly increased in the salicylate-treated group, whereas it was reduced in the memantine-treated group. These results indicate that memantine is useful for the treatment of salicylate-induced tinnitus.


Assuntos
Animais , Ratos , Acústica , Córtex Auditivo , Tronco Encefálico , Potenciais Evocados Auditivos do Tronco Encefálico , Genes Precoces , Ácido Glutâmico , Imuno-Histoquímica , Integrina alfa2 , Memantina , Modelos Animais , N-Metilaspartato , Neurônios , Ruído , Inibição Pré-Pulso , Reflexo de Sobressalto , Zumbido , Fator de Necrose Tumoral alfa
7.
Experimental Neurobiology ; : 419-436, 2018.
Artigo em Inglês | WPRIM | ID: wpr-717371

RESUMO

Chemotherapeutic agents induce long-term side effects, including cognitive impairment and mood disorders, particularly in breast cancer survivors who have undergone chemotherapy. However, the precise mechanisms underpinning chemotherapy-induced hippocampal dysfunction remain unknown. In this study, we investigated the detrimental effects of chronic treatment with a combination of adriamycin and cyclophosphamide (AC) on the neuronal architecture and functions of the hippocampi of female C57BL/6 mice. After chronic AC administration, mice showed memory impairment (measured using a novel object recognition memory task) and depression-like behavior (measured using the tail suspension test and forced swim test). According to Golgi staining, chronic AC treatment significantly reduced the total dendritic length, ramification, and complexity as well as spine density and maturation in hippocampal neurons in a sub-region-specific manner. Additionally, the AC combination significantly reduced adult neurogenesis, the extent of the vascular network, and the levels of hippocampal angiogenesis-related factors. However, chronic AC treatment did not increase the levels of inflammation-related signals (microglial or astrocytic distribution, or the levels of pro-inflammatory cytokines or M1/M2 macrophage markers). Thus, chronic AC treatment changed the neuronal architecture of the adult hippocampus, possibly by reducing neurogenesis and the extent of the vasculature, independently of neuroinflammation. Such detrimental changes in micromorphometric parameters may explain the hippocampal dysfunction observed after cancer chemotherapy.


Assuntos
Adulto , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama , Transtornos Cognitivos , Ciclofosfamida , Citocinas , Doxorrubicina , Tratamento Farmacológico , Elevação dos Membros Posteriores , Hipocampo , Macrófagos , Memória , Transtornos do Humor , Neurogênese , Neurônios , Coluna Vertebral , Sobreviventes
8.
Anatomy & Cell Biology ; : 48-59, 2017.
Artigo em Inglês | WPRIM | ID: wpr-193188

RESUMO

Glycogen synthase kinase (GSK)-3β has been known as a pro-inflammatory molecule in neuroinflammation. The involvement of GSK-3β remains unsolved in acute monophasic rat experimental autoimmune encephalomyelitis (EAE). The aim of this study was to evaluate a potential role of GSK-3β in central nervous system (CNS) autoimmunity through its inhibition by lithium. Lithium treatment significantly delayed the onset of EAE paralysis and ameliorated its severity. Lithium treatment reduced the serum level of pro-inflammatory tumor necrosis factor a but not that of interleukin 10. Western blot analysis showed that the phosphorylation of GSK-3β (p-GSK-3β) and its upstream factor Akt was significantly increased in the lithium-treated group. Immunohistochemical examination revealed that lithium treatment also suppressed the activation of ionized calcium binding protein-1-positive microglial cells and vascular cell adhesion molecule-1 expression in the spinal cords of lithium-treated EAE rats. These results demonstrate that lithium ameliorates clinical symptom of acute monophasic rat EAE, and GSK-3 is a target for the suppression of acute neuroinflammation as far as rat model of human CNS disease is involved.


Assuntos
Animais , Humanos , Ratos , Autoimunidade , Western Blotting , Cálcio , Sistema Nervoso Central , Doenças do Sistema Nervoso Central , Encefalomielite Autoimune Experimental , Quinase 3 da Glicogênio Sintase , Quinases da Glicogênio Sintase , Glicogênio Sintase , Glicogênio , Interleucina-10 , Lítio , Modelos Animais , Esclerose Múltipla , Paralisia , Fosforilação , Medula Espinal , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular
9.
Korean Journal of Veterinary Research ; : 117-120, 2016.
Artigo em Inglês | WPRIM | ID: wpr-20936

RESUMO

Experimental autoimmune encephalomyelitis (EAE) in Lewis rats is characterized by transient paralysis followed by recovery. To evaluate whether transient paralysis in EAE affects bone density, tibiae of EAE rats were morphologically investigated using micro-computed tomography and histology. The parameters of bone health were significantly reduced at the peak stage of EAE rats relative to those of controls (p < 0.05). The reduction of bone density was found to remain unchanged, even in the recovery stage. Collectively, the present data suggest that osteoporosis occurs in paralytic rats with monophasic EAE, possibly through the disuse of hindlimbs and/or autoimmune inflammation.


Assuntos
Animais , Ratos , Autoimunidade , Densidade Óssea , Encefalomielite Autoimune Experimental , Membro Posterior , Inflamação , Osteoporose , Paralisia , Tíbia
10.
Laboratory Animal Research ; : 24-33, 2016.
Artigo em Inglês | WPRIM | ID: wpr-167819

RESUMO

In this study, the potential hepatotoxicity of 1,3-dichloro-2-propanol and its hepatotoxic mechanisms in rats was investigated. The test chemical was administered orally to male rats at 0, 27.5, 55, and 110 mg/kg body weight. 1,3-Dichloro-2-propanol administration caused acute hepatotoxicity, as evidenced by an increase in serum aminotransferases, total cholesterol, and total bilirubin levels and a decrease in serum glucose concentration in a dose-dependent manner with corresponding histopathological changes in the hepatic tissues. The significant increase in malondialdehyde content and the significant decrease in glutathione content and antioxidant enzyme activities indicated that 1,3-dichloro-2-propanol-induced hepatic damage was mediated through oxidative stress, which caused a dose-dependent increase of hepatocellular apoptotic changes in the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and immunohistochemical analysis for caspase-3. The phosphorylation of mitogen-activated protein kinases caused by 1,3-dichloro-2-propanol possibly involved in hepatocellular apoptotic changes in rat liver. Furthermore, 1,3-dichloro-2-propanol induced an inflammatory response through activation of nuclear factor-kappa B signaling that coincided with the induction of pro-inflammatory mediators or cytokines in a dose-dependent manner. Taken together, these results demonstrate that hepatotoxicity may be related to oxidative stress-mediated activation of mitogen-activated protein kinases and nuclear factor-kappa B-mediated inflammatory response.


Assuntos
Animais , Humanos , Masculino , Ratos , Bilirrubina , Glicemia , Peso Corporal , Caspase 3 , Colesterol , Citocinas , Glutationa , Fígado , Malondialdeído , Proteínas Quinases Ativadas por Mitógeno , Estresse Oxidativo , Fosforilação , Transaminases
11.
Biomolecules & Therapeutics ; : 180-188, 2015.
Artigo em Inglês | WPRIM | ID: wpr-55790

RESUMO

This study investigated the possible effects and molecular mechanisms of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rats. Inflammation response was assessed by histopathology and serum cytokines levels. We determined the protein expressions of nuclear transcription factor kappa-B (NF-kappaB), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-alpha (TNF-alpha), oxidative stress, urinary nitrite-nitrate, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, we studied the involvement of mitogen-activated protein kinases (MAPKs) signaling in the protective effects of DADS against CP-induced HC. CP treatment caused a HC which was evidenced by an increase in histopathological changes, proinflammatory cytokines levels, urinary nitrite-nitrate level, and the protein expression of NF-kappaB, COX-2, iNOS, TNF-alpha, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal regulated kinase (ERK). The significant decreases in glutathione content and glutathione-S-transferase and glutathione reductase activities, and the significant increase in MDA content and urinary MDA and 8-OHdG levels indicated that CP-induced bladder injury was mediated through oxidative DNA damage. In contrast, DADS pretreatment attenuated CP-induced HC, including histopathological lesion, serum cytokines levels, oxidative damage, and urinary oxidative DNA damage. DADS also caused significantly decreased the protein expressions of NF-kappaB, COX-2, iNOS, TNF-alpha, p-JNK, and p-ERK. These results indicate that DADS prevents CP-induced HC and that the protective effects of DADS may be due to its ability to regulate proinflammatory cytokines production by inhibition of NF-kappaB and MAPKs expressions, and its potent anti-oxidative capability through reduction of oxidative DNA damage in the bladder.


Assuntos
Animais , Ratos , Ciclo-Oxigenase 2 , Ciclofosfamida , Cistite , Citocinas , Dano ao DNA , Glutationa , Glutationa Redutase , Inflamação , Malondialdeído , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B , Óxido Nítrico Sintase Tipo II , Estresse Oxidativo , Fosfotransferases , Fatores de Transcrição , Fator de Necrose Tumoral alfa , Bexiga Urinária
12.
Journal of Biomedical Research ; : 62-67, 2014.
Artigo em Coreano | WPRIM | ID: wpr-110213

RESUMO

An evidence suggests that even low-dose irradiation can lead to progressive cognitive decline as well as memory deficits in both humans and experimental animals in part due to hippocampal dysfunction. To determine whether or not green tea (GT) and epigallocatechin gallate (EGCG) could attenuate memory impairment as well as suppress hippocampal neurogenesis, passive avoidance and object recognition memory test as well as TUNEL assay and immunohistochemical detection with markers of neurogenesis (Ki-67 and doublecortin (DCX)) were performed using adult mice treated with relatively low-dose gamma irradiation (2.0 Gy). GT was administered intraperitonially at a dosage of 50 mg/kg of body weight at 36 and 12 hr preirradiation and at 30 minutes post-irradiation, or orally at a dosage of 250 mg/kg of body weight/day for 7 days before autopsy. EGCG (25 mg/kg of body weight) was administered intraperitonially at 36 and 12 hr pre-irradiation and at 30 minutes post-irradiation. In the passive avoidance and object recognition memory test, mice trained for 1 day after acute irradiation (2 Gy) showed significant memory deficits compared with sham controls. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus increased by 12 h after irradiation. In addition, the numbers of Ki-67- and DCX-positive cells significantly decreased. GT treatment prior to irradiation attenuated memory defects, blocked apoptotic death, as well as reduced the number of DCX-positive cells. Therefore, GT may attenuate memory defects in adult mice exposed to a relatively low dose of radiation possibly by inhibiting the detrimental effects of irradiation on hippocampal neurogenesis.


Assuntos
Adulto , Animais , Humanos , Camundongos , Síndrome Aguda da Radiação , Apoptose , Autopsia , Peso Corporal , Giro Denteado , Marcação In Situ das Extremidades Cortadas , Transtornos da Memória , Memória , Neurogênese , Chá
13.
Laboratory Animal Research ; : 174-180, 2014.
Artigo em Inglês | WPRIM | ID: wpr-149031

RESUMO

We investigated the protective effects of pine bark extract (pycnogenol(R), PYC) against cisplatin-induced hepatotoxicity and oxidative stress in rats. Twenty-four male rats were divided into the following four groups: (1) vehicle control, (2) cisplatin (7.5 mg/kg), (3) cisplatin & PYC 10 (10 mg/kg/day), and (4) cisplatin & PYC 20 (20 mg/kg/day). A single intraperitoneal injection of cisplatin induced hepatotoxicity, as evidenced by an increase in serum aminotransferase and histopathological alterations, including degeneration/necrosis of hepatocytes, vacuolation, and sinusoidal dilation. In addition, an increase in the malondialdehyde (MDA) concentration and a decrease in the reduced glutathione (GSH) content and catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) activities were observed in the cisplatin-treated rat hepatic tissues. In contrast, PYC treatment effectively prevented cisplatin-induced hepatotoxicity, including the elevation of aminotransferase and histopathological lesions, in a dosedependent manner. Moreover, PYC treatment also induced antioxidant activity by decreasing MDA level and increasing GSH content and SOD and GST activities in liver tissues. These results indicate that PYC has a protective effect against acute hepatotoxicity induced by cisplatin in rats, and that the protective effects of PYC may be due to inhibiting lipid peroxidation and increasing antioxidant activity.


Assuntos
Animais , Humanos , Masculino , Ratos , Catalase , Cisplatino , Glutationa , Glutationa Transferase , Hepatócitos , Injeções Intraperitoneais , Peroxidação de Lipídeos , Fígado , Malondialdeído , Estresse Oxidativo , Superóxido Dismutase
14.
Journal of Biomedical Research ; : 12-18, 2014.
Artigo em Coreano | WPRIM | ID: wpr-70425

RESUMO

Panax ginseng, also known as Korean ginseng, has long been used as a broad tonic in Oriental medicine to augment vitality, health, and longevity, particularly in older people. This study investigated the effects of Korean red ginseng (RG) on bone loss in ovariectomized (OVX) mice. C3H/HeN mice (10-weeks-old) were divided into sham and OVX groups. OVX mice were treated with vehicle, 17beta-estradiol (E2), RG (oral administration, 250 mg/kg/day), or RG (intraperitoneal administration, 50 mg/kg/every other day) for 6 weeks. Serum E2 concentration and alkaline phosphatase (ALP) activity were measured. Tibiae were analyzed using microcomputed tomography. Biomechanical properties and osteoclast surface level were measured. There was no significant difference in the degree of grip strength, body weight, uterine weight, mechanical property, tibiae length, or tibiae weight between the OVX and RG-treated groups. Compared with the OVX group, the serum ALP level was significantly lower in the RG-treated groups. Serum E2 levels and osteoclast surface levels did not change between the OVX and RG-treated groups. RG could not preserve trabecular bone volume, trabecular bone number, trabecular separation, trabecular thickness, structure model index, or bone mineral density of the proximal tibiae metaphysic. In conclusion, there was no definite effect of RG on OVX-induced bone loss in C3H/HeN mice.


Assuntos
Animais , Feminino , Camundongos , Fosfatase Alcalina , Peso Corporal , Densidade Óssea , Força da Mão , Longevidade , Medicina Tradicional do Leste Asiático , Metafísica , Osteoclastos , Osteoporose , Ovariectomia , Panax , Tíbia , Microtomografia por Raio-X
15.
Laboratory Animal Research ; : 168-173, 2013.
Artigo em Inglês | WPRIM | ID: wpr-226192

RESUMO

The integration of metabolism and reproduction involves complex interactions of hypothalamic neuropeptides with metabolic hormones, fuels, and sex steroids. Of these, estrogen influences food intake, body weight, and the accumulation and distribution of adipose tissue. In this study, the effects of estrogen on food intake, serum leptin levels, and leptin mRNA expression were evaluated in ovariectomized rats. Seven-week-old female Wistar-Imamichi rats were ovariectomized and divided into three treatment groups: group 1 (the control group) received sesame oil, group 2 was given 17beta-estradiol benzoate, and group 3 received 17beta-estradiol benzoate plus progesterone. The body weight and food consumption of each rat were determined daily. Serum leptin levels and leptin mRNA expression were measured by ELISA and quantitative RT-PCR, respectively. Food consumption in the control group was significantly higher (P<0.05) than that in groups 2 and 3, although body weight did not significantly differ among the three groups. The serum leptin concentration and leptin mRNA expression were significantly higher (P<0.05) in groups 2 and 3 than in group 1, but no significant difference existed between groups 2 and 3. In conclusion, estrogen influenced food intake via the modulation of leptin signaling pathway in ovariectomized rats.


Assuntos
Animais , Feminino , Humanos , Ratos , Tecido Adiposo , Benzoatos , Peso Corporal , Ingestão de Alimentos , Ensaio de Imunoadsorção Enzimática , Estradiol , Estrogênios , Leptina , Neuropeptídeos , Progesterona , Reprodução , RNA Mensageiro , Óleo de Gergelim , Esteroides
16.
Laboratory Animal Research ; : 204-211, 2013.
Artigo em Inglês | WPRIM | ID: wpr-194278

RESUMO

This study investigated the protective effects of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced testicular toxicity in male rats. DADS was gavaged to rats once daily for 3 days at 100 mg/kg/day. One hour after the final DADS treatment, the rats were given a single intraperitoneal dose of 150 mg/kg CP. All rats were killed and necropsied on day 56 after CP treatment. Parameters of testicular toxicity included reproductive organ weight, testicular sperm head count, epididymal sperm motility and morphology, epididymal index, and histopathologic examinations. The CP treatment caused a decrease in body weight, testicular sperm head count, epididymal sperm motility, and epididymal index. The histopathological examination revealed various morphological alterations, characterized by degeneration of spermatogonia/spermatocytes, vacuolization, and decreased number of spermatids/spermatocytes in the testis, and cell debris and mild oligospermia in the ductus epididymis. In contrast, DADS pretreatment effectively attenuated the testicular toxicity caused by CP, including decreased sperm head count, epididymal sperm motility, and epididymal index and increased histopathological alterations in the testis and epididymis. These results indicate that DADS attenuates testicular toxicity induced by CP in rats.


Assuntos
Animais , Humanos , Masculino , Ratos , Peso Corporal , Ciclofosfamida , Epididimo , Oligospermia , Tamanho do Órgão , Cabeça do Espermatozoide , Motilidade dos Espermatozoides , Testículo
17.
Laboratory Animal Research ; : 1-6, 2013.
Artigo em Inglês | WPRIM | ID: wpr-31700

RESUMO

The aim of this study was to investigate food intake, serum leptin levels, and leptin mRNA expression during the sexual cycle in rats. Female Wistar-Imamichi rats aged 8-10 weeks were used in this experiment. Food intake was measured during the light and dark phases (light on at 07:00 and off at 19:00) of the 4-day estrous cycle in female rats. Serum leptin levels were measured by ELISA, and leptin mRNA expression levels were analyzed using real-time PCR on diestrous- and proestrous-stage rats. Our results revealed that during the sexual cycle, food intake was significantly higher in the dark phase compared with the light phase. Food intake in proestrous females was significantly lower in the light and dark phases compared with the other groups. Serum leptin concentrations were significantly higher in both phases in proestrous rats compared with diestrous rats. There was a significant increase in leptin mRNA expression in adipose tissue during the proestrous period compared with the diestrous period. These findings suggest that increased leptin mRNA expression and serum leptin levels, which are induced by estrogen during the proestrous stage, may play a role in regulating appetitive behavior.


Assuntos
Idoso , Animais , Feminino , Humanos , Ratos , Tecido Adiposo , Comportamento Apetitivo , Ingestão de Alimentos , Ensaio de Imunoadsorção Enzimática , Estrogênios , Ciclo Estral , Leptina , Luz , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro
18.
Laboratory Animal Research ; : 48-54, 2013.
Artigo em Inglês | WPRIM | ID: wpr-31693

RESUMO

The present study investigated the potential subacute toxicity of 1,4-dichlorobutane by a 4-week repeated oral dose in Sprague-Dawley rats. The test article was administered once daily by gavage to male rats at dose levels of 0, 100, 300, and 1,000 mg/kg/day for 4 weeks. All rats were sacrificed at the end of the treatment period. During the test period, clinical signs, mortality, body weight, hematology, serum biochemistry, gross findings, and organ weight were examined. At 1,000 mg/kg/day, an increase in the clinical signs and weights of the liver and kidneys was observed in the male rats. Serum biochemical investigations revealed an increase in alanine aminotransferase, alkaline phosphatase, total cholesterol, total bilirubin, phospholipids, blood urea nitrogen, and gamma glutamyl transferase levels. There were no treatment-related adverse effects in the low and middle-dose groups. In the present experimental conditions, the target organs were determined to be liver and kidney. The no-observed-adverse-effect level was considered to be 300 mg/kg/day in rats.


Assuntos
Animais , Humanos , Masculino , Ratos , Alanina Transaminase , Fosfatase Alcalina , Bilirrubina , Bioquímica , Nitrogênio da Ureia Sanguínea , Peso Corporal , Colesterol , Hematologia , Hidrocarbonetos Halogenados , Rim , Fígado , Nível de Efeito Adverso não Observado , Tamanho do Órgão , Fosfolipídeos , Ratos Sprague-Dawley , Transferases , Pesos e Medidas
19.
Laboratory Animal Research ; : 55-62, 2013.
Artigo em Inglês | WPRIM | ID: wpr-31692

RESUMO

Bone changes are common sequela of radiation therapy for cancer. The purpose of this study was to establish an experimental model of radiation-induced bone loss in adult mice using micro-computed tomography (microCT). The extent of changes following 2 Gy gamma irradiation (2 Gy/min) was studied at 4, 8, 12 or 16 weeks after exposure. Adult mice that received 1, 2, 4 or 6 Gy of gamma-rays were examined 12 weeks after irradiation. Tibiae were analyzed using microCT. Serum markers and biomechanical properties were measured and the osteoclast surface was examined. A significant loss of trabecular bone in tibiae was evident 12 weeks after exposure. Measurements performed after irradiation showed a dose-related decrease in trabecular bone volume fraction (BV/TV) and bone mineral density (BMD), respectively. The best-fitting dose-response curves were linear-quadratic. Taking the controls into accounts, the lines of best fit were as follows: BV/TV (%)= -0.071D2-1.799D+18.835 (r2=0.968, D=dose in Gy) and BMD (mg/cm3) = -3.547D2-14.8D+359.07 (r2=0.986, D=dose in Gy). Grip strength and body weight did not differ among the groups. No dose-dependent differences were apparent among the groups with regard to mechanical and anatomical properties of tibia, serum biochemical markers and osteoclast activity. The findings provide the basis required for better understanding of the results that will be obtained in any further studies of radiation-induced bone responses.


Assuntos
Adulto , Animais , Humanos , Camundongos , Biomarcadores , Peso Corporal , Densidade Óssea , Força da Mão , Modelos Teóricos , Osteoclastos , Tíbia , Microtomografia por Raio-X
20.
Laboratory Animal Research ; : 77-83, 2013.
Artigo em Inglês | WPRIM | ID: wpr-13114

RESUMO

Ultrasonic vocalizations (USVs) are essential communicative sounds used between rodent pups and their mother. Rat pups emit USVs in stressful situations, such as when they are cold or separated from the nest. We verified the ontogenetic changes in USVs emitted by infant rats isolated from their mother during the pre-weaning period. The number of calls, and the median frequency and first peak of frequency of the calls were measured at 1, 3, 5, 7, 10, 12, and 14 days postnatal age in Wistar-Imamichi rats. Pups were placed in a cold glass beaker and USVs were recorded for 5 min. The number of calls increased to a peak on day 5 and then gradually decreased. The median frequency of calls decreased slowly during the first 12 days, and then increased slightly on day 14. Similarly, the first peak frequency of calls was the highest on day 1, and then decreased gradually by day 12. A small increase was observed on day 14. These changes in frequency were correlated with the physical development of the pups, whose body weights increased significantly with age except during postnatal days 7-10.


Assuntos
Animais , Humanos , Lactente , Ratos , Peso Corporal , Temperatura Baixa , Técnica de Imunoensaio Enzimático de Multiplicação , Vidro , Mães , Roedores , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA